

Plant Archives

Journal homepage: http://www.plantarchives.org
DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.101

EXPLORING BACTERIOPHAGES: NATURE'S OWN ANTIMICROBIAL AGENT

Chitra Pokharia and Kavita Shah*

Environmental Biotechnology Lab, Institute of Environment and Sustainable Development, Banaras Hindu University,
Varanasi, Uttar Pradesh - 221005, India.

*Corresponding author E-mail: kavitashah@bhu.ac.in
(Date of Receiving-25-06-2025; Date of Acceptance-26-08-2025)

ABSTRACT

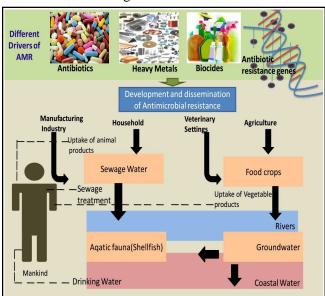
Water is important for every facet of life. Surface water acts as a natural source of freshwater and is important for drinking, cooking as well as other household purposes. Access to safe and clean drinking water is a basic right to every human being for a healthy life. Globally freshwater is becoming a limited resource due to population expansion, anthropogenic contamination and climate change. It is reported that 80% of the diseases worldwide occurs due to contaminated water and water borne pathogens. According to the World Health Organization (WHO) 2022 report, more than two billion individuals rely on water sources contaminated with faecal matter, leading to approximately 485,000 deaths annually from diarrheal diseases associated with unsafe water, inadequate sanitation, and poor hygiene practices. Water pollution and antimicrobial resistance (AMR) are interconnected global crises that threaten public health, food security, and environmental sustainability. This global crisis extends beyond simple water scarcity and is increasingly defined by contamination from microbial pathogens and chemical pollutants. During 2021, United Nations International Children's Emergency Fund (UNICEF) & WHO jointly stated that drivers such as insufficient sanitation infrastructure, industrial effluents, agricultural runoff, and the accelerating impacts of climate change exacerbate the challenge, threatening both human health and environmental stability. Promising applications include wastewater decontamination, mitigation of bacterial outbreaks in aquaculture, and synergistic combinations with antibiotics through phage-antibiotic synergy (PAS). Moreover, phage-based strategies align with sustainability goals by minimizing ecological disruption compared to chemical antimicrobials. Bacteriophages provide a powerful, eco-friendly tool that, if developed and deployed strategically, could complement existing interventions and form a cornerstone of future efforts to combat AMR and reduce the burden of waterborne bacterial pathogens.

Key words: Chemical pollutants, Climate change, Diarrheal diseases, Environmental stability, Pathogens

Introduction

The escalating global water crisis stems from the increasing prevalence of bacterial, viral, and chemical pollutants, which collectively undermine public health and environmental integrity. Contaminated water disproportionately affects low- and middle-income countries (LMICs), where inadequate infrastructure and limited resources heighten vulnerability. For instance, millions in Bangladesh are exposed to chronic arsenic poisoning via contaminated groundwater (Smith *et al.*, 2000), while recurrent cholera outbreaks in Sub-Saharan Africa highlight the consequences of poor water supply and sanitation systems (Mengel *et al.*, 2014). In Latin

America, rivers and aquifers are heavily impacted by industrial and mining waste, with serious repercussions for local communities and ecosystems (Blaustein, 2020). Even high-income nations are not entirely immune, as aging infrastructure and localized contamination events can compromise water quality and safety.


Water pollution has emerged as a critical factor not only in the spread of infectious diseases but also in the proliferation of antimicrobial resistance (AMR). Antimicrobial resistance (AMR) is among the top ten global public health threats, according to the World Health Organization (WHO, 2022). Contaminants such as antibiotics, heavy metals, pesticides, microplastics, and

pathogenic microorganisms create environments conducive to the selection and transmission of antibioticresistant bacteria (ARB) and antibiotic resistance genes (ARGs) (Babuji et al., 2023; Singh et al., 2024; Chaturvedi et al., 2021; Rzymski et al., 2024). It compromises the effectiveness of antibiotics, antifungals, antivirals, and antiparasitic agents, leading to increased morbidity, mortality, and healthcare costs. Evidence indicates that water quality and accessibility are significant predictors of AMR-related morbidity and mortality. Key hotspots for resistance dissemination include wastewater treatment plants (WWTPs) (Mukherjee et al., 2021), urban rivers (Kotwani et al., 2021), and informal settlements, where incomplete removal of antibiotics and ARGs during water treatment, combined with anthropogenic inputs such as improper waste disposal, agricultural runoff, and pharmaceutical effluents, amplify the spread of resistant strains (Sengar & Vijayanandan, 2021; Zheng et al., 2021; Eugenia et al., 2020; Nadimpalli et al., 2020).

Drivers of Antimicrobial Resistance in Water Systems

Multiple studies have confirmed that water bodies function as both reservoirs and transmission pathways for ARB and ARGs as represented in Fig. 1 (Sanganyado & Gwenzi, 2019; Eugenia *et al.*, 2020; Farrell *et al.*, 2021; Zhou *et al.*, 2018). The main drivers include:

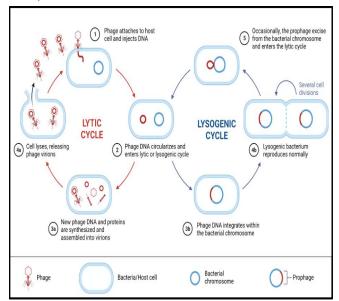
 Discharge of untreated or inadequately treated wastewater, particularly from hospitals, urban settlements, and pharmaceutical industries, which introduces high concentrations of antibiotics and

Fig. 1: Generalized scheme of different drivers of antimicrobial resistance (AMR) and their possible route of transmission to humans (Samreen *et al.*, 2021).

- resistant microorganisms into aquatic environments (Singh *et al.*, 2022; Huang *et al.*, 2019; Sengar & Vijayanandan, 2021; Rodríguez-Mozaz *et al.*, 2015; Eugenia *et al.*, 2020).
- Agricultural runoff, which carries antibiotics, heavy metals, and animal waste from intensive farming practices, creating selective pressure for resistance development (Jones *et al.*, 2023; Kotwani *et al.*, 2021; Gupta *et al.*, 2022).
- Rapid urbanization and informal settlements, where insufficient sanitation and water treatment infrastructure exacerbate contamination and facilitate the spread of resistant pathogens (Nadimpalli et al., 2020; Bartley et al., 2019).
- Environmental co-selective agents, such as heavy metals and microplastics, which promote horizontal gene transfer and accelerate the dissemination of resistance traits within microbial communities (Komijani et al., 2021; Rzymski et al., 2024).

Integrative Approaches for Mitigation

Addressing the intertwined challenges of water pollution and antimicrobial resistance (AMR) requires a holistic, multi-sectoral strategy that combines technological innovations, effective governance, and community engagement. Strengthening water, sanitation, and hygiene (WASH) infrastructure has been shown to significantly reduce both waterborne disease burden and AMR dissemination (Nadimpalli et al., 2020; Lewnard et al., 2024). At the same time, the implementation of advanced wastewater treatment technologies capable of removing antibiotics and resistance genes is increasingly recognized as a key intervention for limiting environmental AMR hotspots (Zheng et al., 2021; Sengar & Vijayanandan, 2021). Similarly, stringent regulation of industrial effluents and agricultural runoff plays a vital role in preventing the release of antibiotics, heavy metals, and other pollutants that co-select for resistance traits (Kotwani et al., 2021; Gupta et al., 2022). Continuous monitoring of environmental reservoirs such as urban rivers, hospital wastewater, and informal settlements is also necessary to track emerging threats (Mukherjee et al., 2021; Monaco et al., 2025).


Furthermore, integrating the One Health framework into policy and research agendas ensures that interventions account for the interconnectedness of human, animal, and environmental health, which is essential for sustainable AMR control (Bürgmann *et al.*, 2018; Singh *et al.*, 2022; La Rosa *et al.*, 2025). Such integrated approaches not only help reduce disease

burden but also limit the environmental persistence of resistant pathogens and safeguard ecosystem resilience.

While these conventional measures are critical, innovative biological strategies are now emerging as complementary solutions. Among them, bacteriophages, viruses that specifically infect and kill bacteria offer a promising, eco-friendly, and highly targeted alternative for combating AMR pathogens in water systems (Abedon *et al.*, 2017). Their natural ability to control bacterial populations, adaptability, and safety profile position them as potential tools not only for therapeutic applications but also for environmental bioremediation, opening new possibilities in addressing the water-AMR nexus (Clokie, 2011).

Bacteriophages

Bacteriophages, or phages, are viruses that specifically infect and replicate within bacterial cells (Clokie, 2011). First discovered nearly a century ago, they are now recognized as the most abundant biological entities on Earth, playing pivotal roles in regulating bacterial populations across diverse environments, from oceans and soil to the human microbiome. Structurally, phages typically consist of a protein capsid encasing their genetic material—either DNA or RNA—and often possess a tail apparatus that facilitates attachment to their bacterial hosts. Once attached, phages inject their genetic material into the host, hijacking the bacterial machinery to produce progeny. Depending on their life cycle, they either lyse the host cell to release new virions (lytic cycle) or integrate their genome into the bacterial chromosome, replicating passively alongside the host (lysogenic cycle) (Kasman, 2022).

Fig. 2: Lytic and lysogenic bacteriophage replication cycles. (Source: Adapted from BioRender, 2025).

Phages primarily follows two life cycles: the lytic and lysogenic cycles (Fig. 2). In the lytic cycle, phages hijack the host cell machinery to rapidly replicate and lyse the host to release progeny phages. In the lysogenic cycle, temperate phages integrate their genome into the host genome, forming a prophage allowing the phage to persist passively as a prophage until certain conditions trigger a return to the lytic cycle.

Interest in phages has surged due to the global rise of antibiotic-resistant bacteria, positioning phage therapy as a promising alternative or complement to conventional antibiotics. Beyond their therapeutic potential, phages are integral to microbial ecology, shaping bacterial evolution through an ongoing predator—prey dynamic and influencing processes such as biogeochemical cycling and horizontal gene transfer. Their interactions with the mammalian immune system are complex, with evidence suggesting they can modulate immune responses and even impact human health directly. While challenges remain in standardizing phage therapy and understanding bacterial resistance mechanisms, ongoing research continues to expand their applications in medicine and biotechnology.

Ecologically, phages are crucial regulators of bacterial populations across multiple ecosystems, including soil, freshwater, marine environments, and the human microbiome. By lysing specific bacterial hosts, they influence microbial community structure, nutrient cycling, and genetic evolution via horizontal gene transfer. Their predatory activity also helps suppress pathogenic bacteria, maintaining microbial balance naturally. Beyond their ecological role, phages are increasingly applied in biotechnology for bacterial detection, genetic engineering, and as alternative antimicrobial strategies, underscoring their multifaceted importance to both natural ecosystems and human society (Clokie, 2011).

History of Bacteriophage Research

The history of bacteriophage discovery spans over a century, beginning with intriguing observations in natural environments. In 1896, British chemist Ernest Hanbury Hankin reported that waters from the Ganges and Jumna (Yamuna) rivers exhibited bactericidal activity against Vibrio cholerae. He noted that this antibacterial effect was retained only when the water was heated in airtight tubes, implying the presence of an unknown agent capable of killing bacteria. This early observation, though not fully understood at the time, foreshadowed the later identification of bacteriophages (Abedon *et al.*, 2011).

Nearly two decades later, in 1915, Frederick Twort observed viral agents that could destroy bacteria, laying the groundwork for the concept of bacteriophages. It

That I. I have Elected Elizymes relevant to water remediation.				
S. No.	Enzyme Type	Function	Potential Role in Water Remediation	Example
1.	Endolysins (peptidoglycan hydrolases)	Hydrolyze bacterial cell walls from inside	Lyse pathogens such as <i>E. coli</i> , <i>Vibrio cholerae</i> , <i>Salmonella</i> , reducing microbial contamination	LysA, PlyV12
2.	Depolymerases	Degrade bacterial capsules, EPS, and biofilms	Remove protective biofilms from water system surfaces (pipes, membranes), making bacteria more susceptible to removal/disinfection	Tail spike depolymerases from <i>Klebsiella</i> phages
3.	Holins	Create pores in bacterial membranes to allow endolysin access	Work synergistically with lysins to rapidly kill bacteria in contaminated water	SppA-like holins
4.	Polysaccharide- degrading enzymes	Break down alginate, cellulose, chitin, etc.	Degrade extracellular polymeric substances in biofilms in wastewater plants or natural water systems	Alginate lyase from <i>Pseudomonas</i> phages
5.	Nucleases	Degrade bacterial DNA	Potentially reduce spread of antibiotic resistance genes (ARGs) in water bodies	DNase-like proteins
6.	Oxidoreductases	Catalyze oxidation/reduction of organic compounds	Could help break down phenolic pollutants, dyes, or aromatic hydrocarbons	Laccase-like oxidases in some cyanophages
7.	Hydrolases & esterases	Hydrolyze ester bonds in fats, oils, pesticides	Biodegrade agricultural runoff contaminants	Lipase/esterase genes in marine phages
8.	Phage-associated ARG suppressors	Inhibit bacterial defense or ARG transfer	Could limit survival of ARG-carrying bacteria in aquatic ecosystems	Anti-CRISPR proteins

Table 1: Phage-Encoded Enzymes Relevant to Water Remediation.

was Felix d'Herelle in 1917, however, who formally described these entities, naming them "bacteriophages" and emphasizing their potential as therapeutic tools (Abedon et al., 2011; Pasteur Institute, 2021). Early investigations primarily explored their ability to treat bacterial infections, offering hope at a time when antibiotics did not exist.

The discovery of antibiotics in the mid-20th century shifted the focus away from phage therapy, causing it to recede from mainstream medicine. Yet, the growing global challenge of antimicrobial resistance in recent decades has renewed interest in these bacterial viruses. Today, bacteriophages are being revisited both as a model system for understanding microbial interactions and as potential therapeutic agents, sparking a resurgence of research worldwide (Letarov, 2020).

Phage-host interaction mechanisms

Bacteriophage-host interactions are highly specific and follow a precise sequence of molecular events. Infection begins with the recognition of bacterial surface receptors by phage tail fibers or receptor-binding proteins (RBPs), which serve as the primary determinants of host specificity (Mourosi et al., 2022). The efficiency of this attachment governs the phage's host range, which can vary from narrow, targeting a few strains, to broad, capable of infecting multiple bacterial species. After binding, phages inject their genetic material into the bacterial cytoplasm and hijack host cellular machinery for genome replication, protein synthesis, and assembly of new virions (Mourosi et al., 2022). Host range is not static; it evolves through phage genetic mutations, recombination events, and selective pressures imposed by bacterial resistance mechanisms, leading to dynamic changes in infection potential over time. Environmental factors, such as nutrient availability, temperature fluctuations, and microbial competition, further influence the success of phage infection and host range adaptation.

Bacterial Defence Mechanisms and Phage Counter-**Strategies**

In response to phage predation, bacteria have developed an arsenal of defense mechanisms. These include restriction-modification systems that enzymatically degrade foreign DNA, CRISPR-Cas adaptive immunity that stores phage sequences for targeted defense, toxin-antitoxin systems, and abortive infection mechanisms that halt viral replication at the cost of host survival (Bleriot et al., 2023; Mutalik et al., 2020). Phages, in turn, counter these defences using strategies such as anti-CRISPR proteins, DNA base modifications, and regulatory proteins that evade host recognition. This molecular arms race drives co-evolution, resulting in diverse outcomes ranging from efficient lysis to partial resistance or complete bacterial immunity. The evolutionary trajectory of both phages and hosts is shaped not only by their genetic diversity but also by ecological pressures, including predation intensity, biofilm architecture, and interspecies interactions (Howard-Varona *et al.*, 2018; Mutalik *et al.*, 2020).

Ecological Complexity and Applied Implications

In complex microbial communities, such as biofilms, phage-host interactions extend beyond simple predatorprey dynamics. Phages can influence microbial diversity, mediate horizontal gene transfer, and, in certain contexts, enhance biofilm formation or stability, thus contributing to ecosystem resilience (Pires et al., 2021). Environmental conditions, including pH, oxygen levels, and the presence of antimicrobial compounds, modulate these interactions and can select for phages with broader host ranges or enhanced infectivity. Understanding these dynamics is critical for applying phages in biotechnology, medicine, and agriculture. Phages are increasingly explored as therapeutic agents against multidrug-resistant bacteria, as biocontrol agents in crop protection, and as modulators of microbial consortia in industrial fermentations (Kauffman et al., 2021). Additionally, insights into phage-host co-evolution and host range evolution provide predictive frameworks for microbial population dynamics, the spread of antimicrobial resistance, and the long-term stability of microbial ecosystems (Stone et al., 2019).

Applications of Bacteriophages

Therapeutic applications

The therapeutic application of bacteriophages was first recognized in 1917 when Félix d'Hérelle described the phenomenon of bactériophage obligatoire (Abedon et al., 2011). Shortly thereafter, Bruynoghe and Maisin (1921) pioneered phage therapy by successfully treating staphylococcal infections in patients. Since then, phage therapy has attracted attention as a promising alternative to conventional antibiotics, particularly in the era of rising antimicrobial resistance (Duckworth & Gulig, 2002; Sarker et al., 2012). Extensive research has explored the therapeutic potential of bacteriophages against a wide range of bacterial pathogens (Matsuzaki et al., 2003; Quintin et al., 2005; Chatterjee et al., 2015; Maszewska et al., 2016).

The first commercial development of phage-based products was carried out in d'Hérelle's laboratory in Paris, where several preparations were produced to target different bacterial infections, including those caused by *Salmonella* spp., *Clostridium* difficile, and diarrheagenic Escherichia coli (Mai *et al.*, 2010; Frampton *et al.*, 2012). These formulations, later commercialized by the French

company L'Oréal, included Bactécoliphage, Bactérhinophage, Bactéintestiphage, Bactépyophage, and Bactéstaphyphage (Summers, 1999; Sulakvelidze *et al.*, 2001).

During the 1940s, Eli Lilly and Company (Indianapolis, IN, USA) pioneered the large-scale production of seven bacteriophage-based therapeutics intended for human use. These preparations were formulated either as broth culture lysates (e.g., Cololysate, Ento-lysate, Neiso-lysate, and Staphylo-lysate) or as water-soluble jellies (e.g., Colo-jel, Ento-jel, and Staphylo-jel). They were specifically designed to target pathogenic bacteria such as *Staphylococcus*, *Streptococcus*, and *Escherichia coli*, and were clinically employed in the management of abscesses, septic wounds, mastoid infections, vaginitis, and respiratory tract infections (Sulakvelidze *et al.*, 2001).

Despite these advances, the rapid expansion of the antibiotic industry in the mid-20th century, driven by the dominance of large pharmaceutical companies, led to a significant decline in the use and commercial interest in phage-based therapeutics (Alisky et al., 1998; Sulakvelidze & Kutter, 2005). Nevertheless, renewed interest in phage therapy has emerged in response to escalating antimicrobial resistance. Recent clinical investigations have demonstrated promising outcomes with phage cocktails applied to complex infections such as septic wounds and burn injuries. For instance, a phage formulation comprising 82 phages active against Pseudomonas aeruginosa and 8 targeting Staphylococcus aureus was successfully administered to eight patients, yielding favorable therapeutic effects (Merabishvili et al., 2009; Nilsson, 2014).

Building on these encouraging results, modern biotechnology companies have advanced phage therapeutics into formal clinical trials. Notably, Pherecydes Pharma (France) has initiated a phase I/II single-blind multicenter clinical trial, termed *Phagoburn (http://www.pherecydes-pharma.com/phagoburn-clinical-study.html)*, to evaluate the efficacy of bacteriophage-based products in treating burn wound infections (Reardon, 2014; Ravat *et al.*, 2015; Servick, 2016).

Phage-based therapeutics are gaining renewed attention as alternatives to antibiotics, particularly for multidrug-resistant infections. The European Phagoburn project, coordinated by the French Ministry of Defense, represents one of the largest clinical evaluations of phage therapy, employing cocktails against Escherichia coli and Pseudomonas aeruginosa in burn patients across multiple

centers in France, Switzerland, and Belgium. Such initiatives highlight the therapeutic potential of phages in areas where conventional antibiotics are increasingly ineffective, including Clostridium difficile infection (CDI), which is associated with dysbiosis, high recurrence, and poor antibiotic efficacy (Sangster *et al.*, 2014, 2015). Similarly, hospital-acquired P. aeruginosa infections remain a major clinical challenge due to their high morbidity, mortality, and resistance rates, reinforcing the importance of phage-based strategies (Viertel *et al.*, 2014; Chatterjee *et al.*, 2015).

Although controlled human trials remain limited, early clinical evidence is promising. Studies have reported successful outcomes using Shigella phages for dysentery (Babalova *et al.*, 1968) and phase I/II trials targeting chronic otitis, venous ulcers, and burn wounds with cocktails active against *S. aureus*, *P. aeruginosa*, and *E. coli* (Bruttin & Brüssow, 2005; Merabishvili *et al.*, 2009; Rhoads *et al.*, 2009). These studies indicate that relatively low phage titers (10²–10³ PFU) may suffice to control high bacterial loads (10v–10y CFU/mL), though higher doses are often applied in practice.

Beyond systemic use, innovative applications such as phage bioderm—a biodegradable polymer complex delivering phages—have been developed for treating wounds, osteomyelitis, and periodontal infections (Mathur *et al.*, 2003). While demonstrating high bacteriolytic activity (20–95% of isolates), challenges including phage neutralization by host immunity, induction of bacterial toxin genes, and endotoxin release during bacterial lysis remain barriers to widespread clinical adoption (Alisky *et al.*, 1998; Mathur *et al.*, 2003).

Biosensor development

According to the International Union of Pure and Applied Chemistry (IUPAC), a biosensor is an analytical device that employs specific biochemical interactions mediated by isolated enzymes, antibodies, tissues, organelles, or whole cells to identify chemical compounds, generally through electrical, optical, or thermal signals (Nagel et al., 1992; Hwang, 2014). Structurally, biosensors consist of a biological recognition element, a transducer, and an electronic system responsible for signal amplification, processing, and display. Their applications extend across multiple fields, including environmental monitoring, pharmaceutical analysis, and defense security. The advantages of biosensors include high sensitivity, specificity, rapid and accurate detection, minimal sample preparation, and cost-effectiveness (Singh et al., 2013; Hwang, 2014). Notably, bacteriophages, due to their distinctive biological, structural, and mechanical features, can be harnessed as recognition elements in biosensors for applications such as bacterial identification, pathogen detection, and biocontrol (Hwang, 2014).

Developing biosensor surfaces using simple phage adsorption is comparatively simpler. However, it can yield variable results due to inconsistent phage immobilization densities (Balasubramanian et al., 2007; Lakshmanan et al., 2007). In contrast, chemically anchoring phages onto detection platforms—for example, using cysteaminemodified and glutaraldehyde-activated gold substrates has been shown to provide more uniform phage coverage and improved detection efficiency (Cademartiri et al., 2010; Singh et al., 2013). When constructing chemically functionalized phage-based biosensors, the purity of the phage suspension, achieved via biopanning, is crucial; the preparation must be free from contaminants such as proteins, lipids, and carbohydrates (Naidoo et al., 2012). Additionally, genetically engineered phages are generally more suitable as bio-probes than wild-type phages, as the latter can lyse host bacteria during detection, potentially reducing sensor signals (Singh et al., 2010, 2013).

Recently, unique ability of phages called "phage display" has emerged as a powerful tool for screening diverse targets, including proteins, carbohydrates, or an entire cell by displaying peptides or proteins on their surface. Lambda, f1, M13, fd, T4, and T7 phages are commonly employed in phage display studies (Smith, 1985; Atias *et al.*, 2008; Singh *et al.*, 2013). This technology holds significant potential to advance diagnostics by generating molecules not readily accessible through conventional methods. Researchers have successfully displayed cellular proteins, peptides, antibody fragments, and antigens on phage surfaces for applications in pathogen detection, molecular imaging, and targeted gene delivery (Petrenko, 2008; Pande *et al.*, 2010; Singh *et al.*, 2013; Hwang, 2014; Chuang *et al.*, 2015).

Water decontamination

Conventional wastewater treatment generally relies on methods such as chemical precipitation, ion exchange, sedimentation, and coagulation—flocculation (Otte & Jacob, 2006). Although effective, these processes demand high energy input, costly infrastructure, and continuous maintenance. To overcome these limitations, researchers are increasingly exploring phage-based approaches for wastewater treatment, aiming to enhance effluent and sludge quality prior to discharge or reuse (Fu & Wang, 2011). Phage application in this context has the potential to control pathogenic bacteria, reduce foaming in activated sludge plants, improve sludge digestibility and dewaterability, and minimize competition between

essential microbial communities and nuisance bacteria (Withey *et al.*, 2005; Mulani *et al.*, 2015). This approach is particularly relevant for developing nations like India, where sustainable, low-cost, and eco-friendly technologies are critically needed.

Wastewater harbours diverse microbial populations and naturally occurring bacteriophages, of which somatic coliphages are the most abundant. These phages, typically lytic in nature, belong to families such as Myoviridae, Siphoviridae, Podoviridae, and Microviridae and primarily target Enterobacteriaceae, especially Escherichia coli (Hayes, 1968). Their abundance in wastewater depends on host bacterial density and environmental conditions such as pH, temperature, concentrations of calcium and magnesium ions, and levels of organic matter (Grabow et al., 2000). Studies have demonstrated phage titers against Salmonella typhi reaching 10y-101p PFU/mL in sewage and culture media (Goyal et al., 1980). Effective phage replication requires at least 10t bacterial hosts per milliliter, however, under nutrient-limited conditions phages tend to associate with solid surfaces rather than remain in flowing water (Goyal et al., 1987).

Somatic Coliphages also inhabit the gastrointestinal tracts of humans and warm-blooded animals, where they replicate and are excreted with feces. Numerous investigations have reported coliphage densities in sewage ranging between 10v and 10x PFU/mL (Bell, 1976; Ignazitto et al., 1980; Havelaar & Hogeboom, 1984; Tartera et al., 1989). Interestingly, certain coliphages resemble human enteric viruses, such as enteroviruses (*Picornaviridae*) and F-RNA coliphages (*Leviviridae*), both of which possess icosahedral capsids (~25 nm) and single-stranded RNA genomes (Kamiko & Ohgaki, 1993). Due to these structural and genomic similarities, coliphages are widely considered suitable surrogates for enteric viruses (Grabow et al., 1995).

While coliphages are routinely released into sewage via fecal waste, human enteric viruses are typically shed during active infections. Notably, adenoviruses are frequently detected in raw sewage worldwide, often in higher abundance than enteroviruses. Approximately 80% of infectious adenoviruses found in sewage are considered enteric strains (Irving & Smith, 1981; Hurst et al., 1988; Krikelis et al., 1985a, 1985b). More recently, novel microbial source tracking methods have employed bacteriophages targeting *Bacteroides* strains (e.g., GA-17, GB-124, ARABA 84) and sorbitol-fermenting *Bifidobacteria* as indicators of human fecal contamination. Moreover, GI F-RNA coliphages have

been proposed as effective indicators of virus reduction efficiency during wastewater treatment (Haramoto *et al.*, 2015).

Agriculture

Bacteriophages, viruses that selectively infect and lyse bacteria, are increasingly recognized as promising biocontrol agents in agriculture. They offer a sustainable alternative to chemical pesticides and antibiotics, thereby supporting global strategies to mitigate antimicrobial resistance (AMR) and reduce reliance on synthetic agrochemicals (Czajkowski et al., 2025). Phages are applied through foliar sprays, seed coatings, soil drenches, and post-harvest treatments, effectively suppressing phytopathogens such as Pseudomonas syringae, Xanthomonas campestris, Ralstonia solanacearum, and Erwinia amylovora, which cause significant crop diseases like bacterial spot, black rot, and fire blight. Field trials with commercial products such as AgriPhage (EPAregistered in the US and Canada) and Erwiphage PLUS (authorized in Hungary) have shown reduced pathogen densities and delayed disease progression (Czajkowski et al., 2025). Similarly, in Africa, phage-based strategies are being explored against Banana Xanthomonas Wilt (BXW), where phages targeting Xanthomonas campestris pv. musacearum could protect staple crops vital to food security (Phage Guard, 2024).

The advantages of phage application extend beyond pathogen control. Their host specificity minimizes collateral effects on beneficial soil microbiota, while their ability to co-evolve with bacteria enhances long-term effectiveness. Moreover, phages can act synergistically with antimicrobials or beneficial microbes, reinforcing plant resilience. Globally, phage use is estimated to reduce crop losses by up to 41%, translating into billions in economic savings, without posing risks to humans, animals, or the environment (Czajkowski *et al.*, 2025). Integration into livestock systems has also been successful, with products like BacWashTM and FinalyseTM shown to reduce Salmonella and E. coli O157:H7 contamination, thereby lowering zoonotic risks and limiting AMR transmission (Fernández *et al.*, 2018).

Despite these benefits, challenges remain. Environmental factors such as UV radiation, temperature fluctuations, and soil pH often compromise phage stability, leading to inconsistent efficacy. Bacterial resistance is another concern, though the use of phage cocktails targeting multiple strains can mitigate this risk (Czajkowski et al., 2025). Regulatory inconsistencies further limit commercialization, particularly in the European Union under the Green Deal framework, where harmonized

approval processes are still lacking. In Africa, technical and infrastructural barriers such as limited facilities for phage isolation, surveillance, and inadequate funding continue to restrict adoption (PhageGuard, 2024). Advanced approaches, including engineered phages and CRISPR-Cas—enhanced strategies, hold potential to overcome these limitations, though ethical and ecological implications of gene transfer remain under debate (Fernández *et al.*, 2018).

Overall, phage-based interventions represent a climate-resilient and eco-friendly innovation for modern agriculture. Addressing challenges of stability, resistance, and regulatory frameworks will be crucial for scaling their application and realizing their full potential as sustainable alternatives to chemical inputs.

Aquaculture

Bacteriophages have emerged as a sustainable and targeted biocontrol strategy in aquaculture, providing an alternative to antibiotics at a time when antimicrobial resistance (AMR) poses increasing challenges. Aquaculture industries, which have grown rapidly over the past three decades as fish products become a vital and affordable source of protein worldwide, often face substantial economic losses due to uncontrolled microbial diseases that threaten their development and sustainability. Pathogenic bacteria such as Flavobacterium psychrophilum, Photobacterium damselae, Vibrio anguillarum, Vibrio vulnificus, Aeromonas hydrophila, and Aeromonas salmonicida have been reported to cause significant mortality in fish stocks and, in some cases, diseases in humans through consumption of contaminated seafood. Among these, vibriosis—caused by various Vibrio species (V. vulnificus, V. anguillarum, V. parahaemolyticus, V. alginolyticus, and V. salmonicida) remains one of the most common and destructive diseases in marine and estuarine fisheries, often resulting in mortality rates of up to 100% in larval stages.

Given the declining efficacy of antibiotics against multidrug-resistant strains, phage therapy has shown considerable promise. For example, phages have been effective against *V. anguillarum* infections in fish larvae. Their use extends across various applications, including immersion baths, feed incorporation, injections, and environmental decontamination in hatcheries and recirculating aquaculture systems (RAS). Phages such as AS-A have demonstrated control over *Aeromonas salmonicida* in Senegalese sole, significantly improving juvenile survival. Commercial formulations, such as BAFADOR® targeting *Aeromonas* and *Pseudomonas*

species, and phage cocktails from Intralytix designed to combat *Vibrio* in shrimp larvae, exemplify the translational potential of this approach.

Studies showed up to 85% survival in shrimp larvae treated against *Vibrio harveyi*. Importantly, phage-based strategies align with sustainable aquaculture by supporting closed systems like RAS, reducing pathogen loads without releasing antibiotics into the environment. Approaches such as phage breeding, encapsulation for controlled release, and integration with endolysins have shown promise in enhancing stability and durability under aquaculture conditions. Nevertheless, the success of phage therapy ultimately depends on achieving sufficient phage proliferation following host lysis and minimizing the latent period for new infections, critical parameters for maintaining abundant phage populations in aquatic environments (Abedon *et al.*, 2011)

Future Perspectives and Emerging Directions

The rapid advancement of phage research is opening new avenues for both fundamental and applied microbiology. Engineered and synthetic phages, designed through genome editing or modular assembly of receptorbinding proteins, offer the potential to expand host range, enhance infectivity, or overcome bacterial resistance mechanisms (Cafora et al., 2019). Computational and predictive modelling approaches are increasingly used to simulate phage-host co-evolution, providing insights into population dynamics, resistance emergence, and optimal phage therapy strategies (Fortier & Sekulovic, 2013). In addition, the integration of metagenomics, single-cell genomics, and high-throughput phenotypic screening is allowing researchers to explore phage diversity, host specificity, and ecological roles at unprecedented resolution. These approaches are particularly valuable in complex environments such as soil, marine systems, and human-associated microbiomes, where phage-host interactions influence nutrient cycling, pathogen suppression, and microbial community stability. Ultimately, combining molecular, ecological, and computational perspectives will enable rational design of phage-based interventions for combating antimicrobial resistance, managing microbial ecosystems, and developing nextgeneration biotechnologies, while also providing predictive frameworks for understanding microbial evolution in natural and engineered systems.

Conclusion

Water pollution and antimicrobial resistance (AMR) are interconnected global crises that threaten public health, food security, and environmental sustainability. Contaminated aquatic systems serve as hotspots for

resistant bacteria and antibiotic resistance genes, accelerating their dissemination through ecosystems and into human and animal populations. Traditional reliance on antibiotics in aquaculture, wastewater management, and public health has proven increasingly inadequate, as the emergence of multidrug-resistant pathogens outpaces the development of new drugs. Against this backdrop, bacteriophages represent a compelling alternative. Their unique properties such as host specificity, self-replication at infection sites, and ability to evolve alongside bacterial hosts makes them highly suited for targeted biocontrol in aquatic environments. Promising applications include wastewater decontamination, mitigation of bacterial outbreaks in aquaculture, and synergistic combinations with antibiotics through phage—antibiotic synergy (PAS). Moreover, phage-based strategies align with sustainability goals by minimizing ecological disruption compared to chemical antimicrobials. However, widespread application still faces challenges such as phage resistance, narrow host ranges, environmental stability, and regulatory bottlenecks. Addressing these limitations through approaches like phage cocktails, encapsulation technologies, genome screening for safety, and integration with broader AMR action plans could accelerate their transition from experimental systems to mainstream practice. Ultimately, bacteriophages provide a powerful, eco-friendly tool that, if developed and deployed strategically, could complement existing interventions and form a cornerstone of future efforts to combat AMR and reduce the burden of waterborne bacterial pathogens.

Acknowledgement

The authors kindly acknowledge the facilities provided by Banaras Hindu University. CP acknowledges DST-Inspire for research fellowship. Contribution and help rendered by the locals while collection of samples is gratefully acknowledged. The help provided by Mr. Naveen Kumar while preparing this manuscript is highly acknowledged.

Author Contribution

CP: Manuscript writing, data collection, methodology, KS: Conceptualization, reviewing, editing and supervision.

Data availability

This paper includes all the relevant data or supplementary information.

Declarations

Competing interests

The authors declare that they have no competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

References

- Abedon, S.T. (2016). Bacteriophage exploitation of bacterial biofilms: Phage preference for less mature targets? *FEMS Microbiology Letters*, **363(3)**, fnv246. https://doi.org/10.1093/femsle/fnv246
- Abedon, S.T., Thomas-Abedon C., Thomas A. and Mazure H. (2011). Bacteriophage prehistory: Is or is not Hankin, 1896, a phage reference? *Bacteriophage*, **1**(3), 174-178. https://doi.org/10.4161/bact.1.3.16591
- Alisky, J., Iczkowski K., Rapoport A. and Troitsky N. (1998). Bacteriophage therapy for the treatment of bacterial infections. *American Journal of Therapeutics*, **5(6)**, 393-397. https://doi.org/10.1097/00045391-199811000-00003
- Atias, N., Wolf Y.I. and Koonin E.V. (2008). Phage display: Evolutionary perspectives and applications. *Trends in Biotechnology*, **26(8)**, 435-443. https://doi.org/10.1016/j.tibtech.2008.04.002
- Babalova, E.G., Katsitadze K.T., Sakvarelidze L.A., Taktakishvili V.T., Imnaishvili N.S., Sharashidze T.G. and Badashvili V.I. (1968). Preventive value of dried dysentery bacteriophage. *Zhurnal Mikrobiologii Epidemiologii i Immunobiologii*, **45**(2), 143-145.
- Babuji, S., Srinivasan R. and Kumar R. (2023). Water pollution and antimicrobial resistance: A critical review. *Environmental Research*, **216**, 114478. https://doi.org/10.1016/j.envres.2022.114478
- Balasubramanian, S., Lakshmanan R. and Khan S. (2007). Surface immobilization of bacteriophages for biosensing applications. *Biosensors and Bioelectronics*, **22(6)**, 1085-1090. https://doi.org/10.1016/j.bios.2006.03.023
- Bartley, P.S., Domitrovic T.N., Moretto V.T. and Delgado J.J. (2019). Waterborne spread of multidrug resistance in low-resource settings. *Frontiers in Microbiology*, **10**, 1312. https://doi.org/10.3389/fmicb.2019.01312
- Bell, R.G. (1976). Relationship between coliphages and enteric viruses in various water environments. *Journal of Applied Bacteriology*, **41(2)**, 269-275. https://doi.org/10.1111/j.1365-2672.1976.tb00636.x
- BioRender (2025). Lytic and Lysogenic Cycle. https://app.biorender.com/biorender-templates/details/t-603d11bcefa06000ad8b8f02-lytic-and-lysogenic-cycle
- Blaustein, R. (2020). Latin American water crisis: Pollution, mining, and inequity. *BioScience*, **70(8)**, 627-632. https://doi.org/10.1093/biosci/biaa072
- Bleriot, I. *et al.* (2023). Proteomic study of the interactions between phages and their bacterial hosts. *Journal of Bacteriology*, **205(3)**, e00342-22. https://doi.org/10.1128/spectrum.03974-22
- Bruttin, A. and Brüssow H. (2005). Human volunteers receiving Escherichia coli phage T4 orally: A safety test of phage therapy. *Antimicrobial Agents and Chemotherapy*, **49**(7), 2874–2878. https://doi.org/10.1128/AAC.49.7.2874-2878.2005
- Bruynoghe, R. and Maisin J. (1921). Essais de thérapeutique au moyen du bacteriophage. Comptes rendus des

- séances de la Société de biologie et de ses filiales, 85, 1120-1121.
- Bürgmann, H., Frigon D., Gaze W.H., Manaia C.M., Pruden A., Singer A.C. and Zhang T. (2018). Water and sanitation: An essential battlefront in the war on antimicrobial resistance. *FEMS Microbiology Ecology*, **94(11)**, fiy101. https://doi.org/10.1093/femsec/fiy101
- Cademartiri, R., Balasubramanian S. and Petrenko V. (2010). Chemically anchored phages for improved biosensor performance. *Analytical Chemistry*, **82(1)**, 325-331. https://doi.org/10.1021/ac902148k
- Cafora, M. et al. (2019). Engineering bacteriophages for enhanced host range and therapeutic applications. Frontiers in Microbiology, 10, 1181. https://doi.org/10.3389/fmicb.2019.01181
- Chatterjee, A., Duerkop B.A. and Mitchell A.M. (2015). Bacteriophages and their therapeutic potential. *Frontiers in Microbiology*, **6**, 775. https://doi.org/10.3389/fmicb.2015.00775
- Chaturvedi, P., Shukla P. and Gupta R. (2021). Antimicrobial resistance in aquatic systems: Emerging drivers and challenges. *Science of the Total Environment*, **769**, 145188. https://doi.org/10.1016/j.scitotenv.2021.145188
- Chuang, S.C., Hsiao Y.H. and Hwang J. (2015). Phage display and its application in molecular imaging and diagnostics. *Current Pharmaceutical Biotechnology*, **16**(**5**), 398-406. https://doi.org/10.2174/1389201015666141126121524
- Clokie, M.R.J. (2011). Phages in nature. *Nature Reviews Microbiology*, **9(1)**, 1-10. https://doi.org/10.1038/nrmicro2460
- Czajkowski, R., Roca A. and Matilla M.A. (2025). Harnessing bacteriophages for sustainable crop protection in the face of climate change. *Microbial Biotechnology*, **18**(1), Article e70108. https://doi.org/10.1111/1751-7915.70108
- Duckworth, D.H. and Gulig P.A. (2002). Bacteriophages: Potential treatment for bacterial infections. *BioDrugs*, **16(1)**, 57-62. https://doi.org/10.2165/00063030-200216010-00006
- Eugenia, S., López M. and Castillo R. (2020). Environmental antibiotic pollution: Role of wastewater in the dissemination of resistance. *Current Opinion in Environmental Science & Health*, **13**, 44-50. https://doi.org/10.1016/j.coesh.2019.10.005
- Farrell, A., Crispie F., O'Sullivan O. and Cotter P.D. (2021).

 Antibiotic resistance genes in aquatic environments: A review of their sources and persistence. *Frontiers in Microbiology*, **12**, 621. https://doi.org/10.3389/fmicb.2021.621
- Fernández, L., Rodríguez A. and García P. (2018). Phage or foe: An insight into the impact of viral predation on microbial communities. Frontiers in Cellular and Infection Microbiology, 8, Article 296. https://doi.org/10.3389/fcimb.2018.00296
- Fortier, L.C. and Sekulovic O. (2013). Importance of prophages to evolution and virulence of bacterial pathogens.

- *Virulence*, **4(5)**, 354–365. https://doi.org/10.4161/viru.24600
- Frampton, R.A., Pitman A.R. and Fineran P.C. (2012). Advances in bacteriophage-mediated control of plant pathogens. *International Journal of Microbiology*, 2012, 326452. https://doi.org/10.1155/2012/326452
- Fu, F. and Wang Q. (2011). Removal of heavy metal ions from wastewaters: A review. *Journal of Environmental Management*, **92(3)**, 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
- Goyal, S.M., Gerba C.P. and Bitton G. (1987). Phage ecology. Wiley-Interscience.
- Goyal, S.M., Gerba C.P. and Melnick J.L. (1980). Human enteric viruses in oysters and their possible role in transmission. Applied and Environmental Microbiology, 39(6), 122-130.
- Grabow, W.O.K., Taylor M.B. and De Villiers J.C. (1995). New methods for the detection of viruses: Call for review of drinking-water quality guidelines. *Water Science and Technology*, **31**(**5-6**), 239–247.
- Grabow, W.O.K., Taylor M.B. and Kfir R. (2000). Bacteriophages as indicators of microbial water quality. *Water Research*, **34(6)**, 1711-1721. https://doi.org/10.1016/S0043-1354(99)00373-1
- Gupta, R., Kumar A. and Shukla P. (2022). Antibiotics and heavy metals in agriculture: Drivers of antimicrobial resistance. *Environmental Pollution*, **306**, 119365. https://doi.org/10.1016/j.envpol.2022.119365
- Haramoto, E., Kitajima M., Kishida N., Konno Y., Katayama H., Asami M. and Akiba M. (2015). Occurrence of viruses and protozoa in drinking water sources of Japan and implications for human health. *Water Research*, **76**, 1-11. https://doi.org/10.1016/j.watres.2015.02.039
- Havelaar, A.H. and Hogeboom W.M. (1984). Factors affecting the enumeration of coliphages in sewage and sewage-polluted waters. *Antonie van Leeuwenhoek*, **50(3)**, 315-324. https://doi.org/10.1007/BF00405095
- Hayes, W. (1968). The genetics of bacteria and their viruses: Studies in basic genetics and molecular biology. Blackwell Scientific.
- Howard-Varona, C. *et al.*, (2018). Multiple mechanisms drive phage infection efficiency in nature. *Nature Ecology & Evolution*, **2(2)**, 283-290. https://doi.org/10.1038/s41559-017-0433-3
- Huang, J.J., Hu H.Y., Wu Y.H., Wei B. and Lu Y. (2019). Monitoring antibiotics and antibiotic-resistant bacteria in wastewater. *Environmental Monitoring and Assessment*, 191, 506. https://doi.org/10.1007/s10661-019-7647-8
- Hurst, C.J., Benton W.H. and McClellan K.A. (1988). Comparison of adenovirus and enterovirus concentrations in wastewater. *Applied and Environmental Microbiology*, **54(8)**, 1887–1897.
- Hwang, J. (2014). Phage-based optical biosensors. *Journal of Molecular and Genetic Medicine*, **8(1)**, 1000103. https:/

/doi.org/10.4172/1747-0862.1000103

- Ignazitto, P., Sanguinetti G and Farinelli L. (1980). Presence of bacteriophages in wastewater treatment plants. *Water Research*, **14(7)**, 879-882.
- Irving, L.G. and Smith F.A. (1981). One-year survey of enteroviruses, adenoviruses, and reoviruses isolated from effluent at an activated-sludge purification plant. *Applied and Environmental Microbiology*, **41(1)**, 51-59.
- Jones, K.E., Patel N.G. and Behrens C.L. (2023). One Health approaches to waterborne antimicrobial resistance. *Nature Reviews Microbiology*, **21**(5), 280-294. https://doi.org/10.1038/s41579-023-00775-2
- Kamiko, N. and Ohgaki S. (1993). Investigation on the behavior of FRNA phages in water environments. *Water Science and Technology*, **27(3-4)**, 455-458.
- Kasman, L.M. (2022). Bacteriophages. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK493185/
- Kauffman, K.M. *et al.*, (2021). Understanding and exploiting phage-host interactions. *Viruses*, **13(6)**, 1003. https://doi.org/10.3390/v13061003
- Komijani, M., Taghavi M. and Maleki A. (2021). Co-selection of antimicrobial resistance by heavy metals and microplastics in water. *Journal of Hazardous Materials*, **416**, 125900. https://doi.org/10.1016/j.jhazmat.2021.125900
- Kotwani, A., Joshi J. and Kaloni D. (2021). Pharmaceutical wastewater as a source of antimicrobial resistance. *Current Opinion in Environmental Science & Health*, **19**, 100222. https://doi.org/10.1016/j.coesh.2020.100222
- Krikelis, V., Kottaridi C. and Dimitriadis G. (1985a). Distribution of adenoviruses in raw sewage in Greece. *Water Research*, **19(8)**, 1049-1051.
- Krikelis, V., Kottaridi C. and Dimitriadis G. (1985b). Enteroviruses and adenoviruses in raw sewage and treated effluents. *Water Research*, **19(8)**, 1053-1055.
- La Rosa, G., Libera S.D. and Bonadonna L. (2025). Antimicrobial resistance in water environments: A One Health perspective. *Trends in Microbiology*, **33(1)**, 30-42. https://doi.org/10.1016/j.tim.2024.10.005
- Lakshmanan, R., Balasubramanian S. and Petrenko V. (2007). Challenges in phage immobilization for biosensor development. *Biosensors and Bioelectronics*, **22(12)**, 3000–3006. https://doi.org/10.1016/j.bios.2006.09.012
- Letarov, A.V. (2020). History of early bacteriophage research and emergence of key concepts in virology. *Frontiers in Microbiology*, **11**, 1-10. https://doi.org/10.3389/fmicb.2020.00768
- Lewnard, J.A., Lo N.C., Arinaminpathy N., Frost I. and Laxminarayan R. (2024). Water, sanitation, and hygiene in relation to antimicrobial resistance in LMICs. *The Lancet Global Health*, **12**(3), e456–e468. https://doi.org/10.1016/S2214-109X(23)00498-1
- Mai, V., Ukhanova M., Reinhard M.K., Li M. and Sulakvelidze

- A. (2010). Bacteriophage administration significantly reduces Shigella colonization and shedding by Shigella-infected mice. *Journal of Infectious Diseases*, **201**(7), 1081–1088. https://doi.org/10.1086/651132
- Maszewska, A., Zygmunt M. and Górski A. (2016). Phage therapy in the era of multi-drug resistance. *Postêpy Higieny i Medycyny Doæwiadczalnej*, **70**, 846-857. https://doi.org/10.5604/17322693.1210088
- Mathur, M.D., Vidhani S. and Mehndiratta P.L. (2003). Bacteriophage therapy: An alternative to conventional antibiotics. *Indian Journal of Medical Microbiology*, **21**(2), 56-60.
- Matsuzaki, S., Rashel M., Uchiyama J., Sakurai S., Ujihara T., Kuroda M. and Sugihara S. (2003). Bacteriophage therapy: A revitalized therapy against bacterial infectious diseases. *Journal of Infection and Chemotherapy*, **9(1)**, 9-20. https://doi.org/10.1007/s10156-002-0186-1
- Mengel, M.A., Delrieu I., Heyerdahl L. and Gessner B.D. (2014). Cholera outbreaks in Africa. *Current Topics in Microbiology and Immunology*, **379**, 117-144. https://doi.org/10.1007/82-2013-331
- Merabishvili, M., Pirnay J.P., Verbeken G., Chanishvili N., Tediashvili M., Lashkhi N. and Vaneechoutte M. (2009). Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. *PLoS One*, **4(3)**, e4944. https://doi.org/10.1371/journal.pone.0004944
- Monaco, F., Pilla G. and Rossi F. (2025). Waterborne antimicrobial resistance and the One Health framework. *Nature Reviews Disease Primers*, **11**, 15. https://doi.org/10.1038/s41572-025-00715-9
- Mourosi, J.T. (2022). Understanding bacteriophage tail fiber interactions with host surface receptors. *International Journal of Molecular Sciences*, **23(20)**, 12146. https://doi.org/10.3390/ijms232012146
- Mukherjee, M., Gupta A. and Paul D. (2021). Wastewater treatment plants as hotspots for antimicrobial resistance. *Journal of Environmental Management*, **293**, 112819. https://doi.org/10.1016/j.jenvman.2021.112819
- Mulani, M.S., Kamble S.P., Kumkar S.N., Tawre M.S. and Pardesi K.R. (2015). Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. *Frontiers in Microbiology*, **6**, 832. https://doi.org/10.3389/fmicb.2015.00832
- Mutalik, V.K. *et al.*, (2020). High-throughput mapping of the phage resistance landscape in Escherichia coli. *PLOS Biology*, **18(10)**, e3000877. https://doi.org/10.1371/journal.pbio.3000877
- Nadimpalli, M.L., Marks S J., Montealegre M.C., Gilman R.H. and Pajuelo M.J. (2020). Urban informal settlements as hotspots of antimicrobial resistance. *Environmental Health Perspectives*, **128(9)**, 095001. https://doi.org/10.1289/EHP6554
- Naidoo, S., Singh A. and Petrenko V. (2012). Purification strategies for phage suspensions in biosensor applications. *Analytical Biochemistry*, **426(2)**, 162-169.

https://doi.org/10.1016/j.ab.2012.03.018

- Nilsson, A.S. (2014). Phage therapy—Constraints and possibilities. *Upsala Journal of Medical Sciences*, **119(2)**, 192–198. https://doi.org/10.3109/03009734.2014.902878
- Otte, J. and Jacob S. (2006). Decentralized wastewater management in developing countries: Challenges and opportunities. *Water Science and Technology*, **53(10)**, 31-40. https://doi.org/10.2166/wst.2006.310
- Pande, J., Szewczyk M.M. and Grover A.K. (2010). Phage display: Concept, innovations, applications and future. *Biotechnology Advances*, **28**(**6**), 849-858. https://doi.org/10.1016/j.biotechadv.2010.06.005
- Pasteur Institute. (2021). Félix d'Hérelle, discoverer of bacteriophages. Retrieved from https://www.pasteur.fr/en/institut-pasteur/history/felix-herelle-discoverer-bacteriophages
- Petrenko, V. (2008). Landscape phage: Evolution from phage display to biosensors. *Integrative Biology*, **1(1)**, 1-11. https://doi.org/10.1039/b717195b
- Phage Guard. (2024). The application of bacteriophages in the African AgriFood sector. Innovate UK. https://iukbusiness-connect.org.uk/wp-content/uploads/2024/03/The-application-of-bacteriophages-in-the-African-AgriFood-sector Innovate-UK.pdf
- Pires, D.P. *et al.*, (2021). Phage therapy: A renewed approach to combat bacterial infections. *Viruses*, **13(3)**, 499. https://doi.org/10.3390/v13030499
- Quintin, A., Askar M. and Barrow P. (2005). Virulent bacteriophages as potential therapeutic agents against Escherichia coli O157. Veterinary Microbiology, 111(1-2), 73-82. https://doi.org/10.1016/j.vetmic.2005.10.012
- Ravat, F., Jault P., Gabard J. and Jennes S. (2015). Bacteriophage therapy in burn wound infections: The Phagoburn trial. *Journal of Wound Care*, **24(4 Suppl**), S4–S10. https://doi.org/10.12968/jowc.2015.24.Sup4.S4
- Reardon, S. (2014). Phage therapy gets revitalized. *Nature*, **510(7503)**, 15–16. https://doi.org/10.1038/510015a
- Rhoads, D.D., olcott R.D., Kuskowski M.A., Wolcott B.M., Ward L.S. and Sulakvelidze A. (2009). Bacteriophage therapy of venous leg ulcers in humans: Results of a phase I safety trial. *Journal of Wound Care*, **18**(6), 237–238, 240–243. https://doi.org/10.12968/jowc.2009.18.6.42801
- Rodríguez-Mozaz, S., Chamorro S. and Barceló D. (2015). Antibiotics and antibiotic resistance genes in wastewater. *Water Research*, **85**, 83–95. https://doi.org/10.1016/j.watres.2015.08.041
- Rzymski, P., Tomczyk K. and Klimaszyk P. (2024). Microplastics and antimicrobial resistance in aquatic systems. *Science of the Total Environment*, **912**, 168501. https://doi.org/10.1016/j.scitotenv.2023.168501
- Samreen, Ahmad I., Malak H.A. and Abulreesh H.H. (2021). Environmental antimicrobial resistance and its drivers: A potential threat to public health. *Journal of Global*

- Antimicrobial Resistance, 27, 101-111. https://doi.org/10.1016/j.jgar.2021.08.001
- Sanganyado, E. and Gwenzi W. (2019). Antibiotic resistance in drinking water supplies: A global review. *Chemosphere*, **219**, 588–606. https://doi.org/10.1016/j.chemosphere.2018.12.187
- Sangster, W., Hegarty J.P., and Stewart D.B. (2015). Bacteriophage therapy for Clostridium difficile infection: An update. *Current Opinion in Gastroenterology*, **31(1)**, 1-5. https://doi.org/10.1097/MOG0000000000000000139
- Sarker, S.A., Brussow H. and McCallin S. (2012). Phage therapy for diarrheal disease in children. *Clinical Infectious Diseases*, **55(9)**, 1164-1171. https://doi.org/10.1093/cid/cis564
- Sengar, A. and Vijayanandan S. (2021). Pharmaceutical residues in wastewater and AMR dissemination. *Environmental Challenges*, **4**, 100154. https://doi.org/10.1016/j.envc.2021.100154
- Servick, K. (2016). Beleaguered phage therapy trial presses on. *Science*, **352**(**6289**), 1506. https://doi.org/10.1126/science.352.6289.1506
- Singh, A., Kaushik A., Kumar R. and Nair M. (2013). Biosensors for pathogen detection: A smart approach towards clinical diagnosis. *Sensors and Actuators B: Chemical*, **176**, 1490-1497. https://doi.org/10.1016/j.snb.2012.12.013
- Singh, A., Kumar V. and Singh R. (2022). Water as a driver of antimicrobial resistance: A One Health perspective. *Journal of Hazardous Materials*, **423**, 127154. https://doi.org/10.1016/j.jhazmat.2021.127154
- Singh, A., Singh P. and Petrenko V. (2010). Phage immobilization and biosensor signal optimization. *Biosensors and Bioelectronics*, **25(7)**, 1733*1740. https://doi.org/10.1016/j.bios.2009.12.011
- Singh, P., Thakur R. and Patel A. (2024). Antibiotic residues and water pollution: Drivers of antimicrobial resistance. *Environmental Pollution*, **320**, 121001. https://doi.org/10.1016/j.envpol.2023.121001
- Smith, A.H., Lingas E.O. and Rahman M. (2000). Contamination of drinking-water by arsenic in Bangladesh: A public health emergency. *Bulletin of the World Health Organization*, **78(9)**, 1093-1103.
- Smith, G.P. (1985). Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. *Science*, **228(4705)**, 1315-1317. https://doi.org/10.1126/science.4001944
- Stone, E. *et al.*, (2019). Understanding and exploiting phage-host interactions. *Viruses*, **11(6)**, 567. https://doi.org/10.3390/v11060567
- Sulakvelidze, A. and Kutter E. (2005). Bacteriophage therapy in humans. In E. Kutter & A. Sulakvelidze (Eds.), Bacteriophages: Biology and applications (pp. 381-436).

CRC Press.

- Sulakvelidze, A., Alavidze Z. and Morris J.G. (2001). Bacteriophage therapy. *Antimicrobial Agents and Chemotherapy*, **45(3)**, 649–659. https://doi.org/10.1128/AAC.45.3.649-659.2001
- Summers, W.C. (1999). Felix d'Herelle and the origins of molecular biology. Yale University Press.
- Tartera, C., Jofre J. and Lucena F. (1989). Fecal pollution indicators: Comparison of the persistence and detectability of coliphages and coliform bacteria in natural waters. *Water Research*, **23(10)**, 1225-1229.
- UNICEF & World Health Organization (2021). Progress on household drinking water, sanitation and hygiene 2000–2020: Five years into the SDGs. UNICEF/WHO Joint Monitoring Programme.
- Viertel, T.M., Ritter K. and Horz H.P. (2014). Viruses versus bacteria—Novel approaches to phage therapy as a tool against multidrug-resistant pathogens. *Journal of Antimicrobial Chemotherapy*, **69**(9), 2326-2336. https://doi.org/10.1093/jac/dku173

- Withey, S., Cartmell E., Avery L.M. and Stephenson T. (2005). Bacteriophages—Potential for application in wastewater treatment processes. *Science of the Total Environment*, **339(1-3)**, 1-18. https://doi.org/10.1016/j.scitotenv.2004.09.021
- World Health Organization (2022). Drinking-water. WHO Fact Sheets. https://www.who.int/news-room/fact-sheets/detail/drinking-water
- Zhang, S. *et al.*, (2025). Phage engineering strategies to expand host range for therapeutic applications. *Current Opinion in Biotechnology*, **74**, 1-8. https://doi.org/10.1016/j.copbio.2025.02.001
- Zheng, J., Li J. and Chen H. (2021). Wastewater and antimicrobial resistance dissemination: A review. *Frontiers in Environmental Science*, **9**, 652. https://doi.org/10.3389/fenvs.2021.00652
- Zhou, Z.C., Zheng J., Wei Y.Y., Chen T. and Dai Y. (2018). Antibiotic resistance genes in water environments. *Applied and Environmental Microbiology*, **84(21)**, e01982-18. https://doi.org/10.1128/AEM.01982-18.